Abstract

Backstepping control for fractional-order nonlinear systems (FONSs) requires the analytic calculation of fractional derivatives of certain complicated stabilizing functions, which becomes prohibitive as the order of the system increases. This article aims to facilitate the adaptive neural network (NN) backstepping control design for FONSs with actuator faults whose parameters and patterns are fully unknown. A fractional filtering approach, which obviates the requirement of analytic fractional differentiation, is used to generate command signals together with their fractional derivatives. Compensated tracking errors that can eliminate approximation errors of command signals are generated by fractional filters. The proposed adaptive NN command filtered backstepping control (ANNCFBC) approach, together with fractional adaptive laws, guarantees not only the boundedness of all involved variables but also the convergence of both the tracking error and the compensated tracking error to a sufficiently small region. Finally, simulation studies are given to indicate the effectiveness of the proposed control method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.