Abstract

A neural network controller design is studied for a class of nonlinear chaotic systems with uncertain parameters. Because the chaos phenomena are often in this class of systems, it is indispensable to control this class of systems. At the same time, due to the presence of uncertainties in the chaotic systems, it results in the difficulties of the controller design. The neural networks are employed to estimate the uncertainties of the systems and a controller is designed to overcome the chaos phenomena. The main contribution of this paper is that the adaptation law can be determined via the gradient descent algorithm to minimize a cost function of error. It can prove the stability of the closed-loop system. The numerical simulation is specified to pinpoint the validation of the approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.