Abstract

This paper proposes an adaptive neural-fuzzy sliding-mode control method for uncertain nonlinear systems with actuator effectiveness faults and input saturation. The parameter dependence of the control scheme is removed from the bound of actuator faults by updating online. A neural-fuzzy model is developed to approximate the uncertain nonlinear terms and a sliding-mode online-updating controller is developed to estimate the bound of the actuator with no prior knowledge of the fault. The asymptotic stability is verified via the Lyapunov method in the presence of actuator faults and saturation. Furthermore, the adaptive neural-fuzzy control method is extended to the uncertain faulty nonlinear systems with integral sliding-mode manifold as well as other popular sliding-mode surfaces. A numerical example is presented to demonstrate the effectiveness of the derived results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.