Abstract

The control design method for a class of non-strict feedback nonlinear systems is studied in this brief considering uncertain nonlinearities and unknown non-symmetrical input dead-zone. Combining with the finite-time command filtered backstepping (FCFB) technique, a novel finite-time adaptive control approach is proposed in which a neural network-based methodology is adopted to cope with the uncertain nonlinearities in the non-strict feedback form. The input dead-zone model is transformed into a simple linear system with unknown gain and bounded disturbance which is estimated by an adaptive factor. Using the finite-time Lyapunov theory, the system convergence is proved. And the effectiveness of the proposed control scheme is verified through comparative numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.