Abstract

This paper explores the design of an anti-saturation adaptive finite-time control strategy with the neural network (NN) technique for the space circumnavigation mission. Before executing the controller design, the analytical solutions of the desired angular velocity and its derivative of the active spacecraft are calculated. Since there are uncertain saturation constraints on control forces and moments in the actual propulsion system, an auxiliary system compensated by an adaptive NN is adopted. The modified auxiliary system no longer needs the precise output values of the actuators. Besides, the hyperbolic tangent function is introduced to design the weight update law for the NN compensator, so that the derivative of the weight estimator will not be amplified by the quadratic of states when the system states are large. It is proved that tracking errors of the system states can converge to a residual set of the origin in finite time. Simulation results show that the maximum amplitudes of the control signals are greatly reduced compared to the classical non-singular terminal sliding-mode control scheme, and that the neural-based compensator can significantly weaken the overshoot and chattering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.