Abstract

This work proposed a novel adaptive neural dynamics (AND)-based speed control strategy for the stable sub satellite’s retrieval of the tethered satellite system (TSS). The new control scheme is implemented by adjusting the retrieval speed only. An analytical speed function is used to ensure stable retrieval without libration motion overall. A high-efficiency adaptive neural dynamic control law with the retrieval speed as control input is used to eliminate the libration motion. In the control loop, the tension in the tether is monitored and restrained directly. The Lyapunov stability of the control law is proved analytically. The simulation results show the proposed adaptive neural dynamics-based speed control strategy is very effective in keeping a stable retrieval by adjusting the retrieval speed only. The libration motions can be eliminated promptly in a fast manner with limited control input and tension constrain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call