Abstract
In this paper, an adaptive neural network-based controller is proposed for a space robot system with an attitude controlled base without joint acceleration measurements and in the presence of parametric uncertainties and external disturbances. Based on the dynamic model, a neural network-based controller is proposed that achieves the required tracking effectively. A feedforward neural network is employed to learn the existing unknown dynamics of robot system. The uniform ultimate boundedness of all signals in the closed-loop system is guaranteed by the Lyapunov approach. It is shown that the neural network can cope with the unknown nonlinearities through the adaptive learning process and requires no preliminary off learning. Finally, simulation study has been performed to evaluate the controller performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.