Abstract

In this paper, an adaptive neural network (NN) control scheme is developed for a class of stochastic nonlinear systems with time-varying full state constraints. In the controller design, RBF NNs are employed to approximate the unknown terms, and the backtracking technique is introduced to overcome the restriction of matching conditions. At the same time, tangent type time-varying barrier Lyapunov functions (tan-TVBLFs) are constructed to ensure the full state constraints are never violated, where tan-TVBLFs are beneficial to integrate constraint analysis into a common method. Furthermore, the Lyapunov stability theory is used to prove that all closed-loop signals are semiglobal uniformly ultimately bounded in probability and error signals remain in the compact set do not violate the time-varying constraints. A simulation example will be used to exhibit the effectiveness of the proposed control scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call