Abstract

In this paper, adaptive variable structure neural control is investigated for a class of nonlinear systems under the effects of time-varying state delays and uncertain hysteresis inputs. The unknown time-varying delay uncertainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design, and the effect of the uncertain hysteresis with the Prandtl-Ishlinskii (PI) model representation is also mitigated using the proposed control. By utilizing the integral-type Lyapunov function, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded (SGUUB). Extensive simulation results demonstrate the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call