Abstract

This study aims to contribute to the reduction of carbon dioxide and the production of hydrogen through an investigation of the photocatalytic reaction process. Machine learning algorithms can be used to predict the hydrogen yield in the photocatalytic carbon dioxide reduction process. Although regression-based approaches provide good results, the accuracy achieved with classification algorithms is not very high. In this context, this study presents a new method, Adaptive Neural Architecture Search (NAS) using metaheuristics, to improve the capacity of ANNs in estimating the hydrogen yield in the photocatalytic carbon dioxide reduction process through classification. The NAS process was carried out with a tool named HyperNetExplorer, which was developed with the aim of finding the ANN architecture providing the best prediction accuracy through changing ANN hyperparameters, such as the number of layers, number of neurons in each layer, and the activation functions of each layer. The nature of the NAS process in this study was adaptive, since the process was accomplished through optimization algorithms. The ANNs discovered with HyperNetExplorer demonstrated significantly higher prediction performance than the classical ML algorithms. The results indicated that the NAS helped to achieve better performance in the estimation of the hydrogen yield in the photocatalytic carbon dioxide reduction process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.