Abstract

This paper proposed an adaptive neural admittance control strategy for collision avoidance in human-robot collaborative tasks. In order to ensure that the robot end-effector can avoid collisions with surroundings, robot should be operated compliantly by human within a constrained task space. An impedance model and a soft saturation function are employed to generate a differentiable reference trajectory. Then, adaptive neural network control with position constraint, based on integral barrier Lyapunov function (IBLF), is designed to achieve precise tracking while guaranteeing constrained satisfaction. Utilizing Lyapunov stability principles, we prove that semi-globally uniformly bounded stability is guaranteed for all states of the closed-loop system. At last, the effectiveness of the proposed algorithm is verified on a Baxter robot experimental platform. Collisions with surroundings can be avoided in human-robot collaborative tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call