Abstract

The brain is known to be plastic, i.e., capable of changing and reorganizing as it develops and accumulates experience. Recently, a novel form of brain plasticity was described which is activity-dependent myelination of nerve fibers. Since the speed of propagation of action potentials along axons depends significantly on their degree of myelination, this process leads to adaptive change of axonal delays depending on the neural activity. To understand the possible influence of the adaptive delays on the behavior of neural networks, we consider a simple setup, a neuronal oscillator with delayed feedback. We show that introducing the delay plasticity into this circuit can lead to the occurrence of slow oscillations which are impossible with a constant delay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.