Abstract

When populations of microorganisms are subjected to certain nonlethal selections, useful mutants arise among the nongrowing cells whereas useless mutants do not. This phenomenon, known as adaptive, directed, or selection-induced mutation, challenges the long-held belief that mutations only arise at random and without regard for utility. In recent years a growing number of studies have examined adaptive mutation in both bacteria and yeast. Although conflicts and controversies remain, the weight of the evidence indicates that adaptive mutation cannot be explained by trivial artifacts and that nondividing cells accumulate mutations in the absence of genomic replication. Because this process tends to produce only useful mutations, the cells appear to have a mechanism for preventing useless genetic changes from occurring or for eliminating them after they occur. The model that most readily explains the evidence is that cells under stress produce genetic variants continuously and at random, but these variants are immortalized as mutations only if they allow the cell to grow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.