Abstract
Modern smart lighting systems have the potential to improve lighting conditions by employing adaptive dimming. However, the light intensity pattern of the individual luminaires is often not optimally matching with the region(s) of interest. By using adaptive lighting fixtures with a tunable radiation pattern, much more targeted illumination can be enabled. The already demonstrated adaptive lighting fixtures are typically quite bulky, and require user input to optimize the emitted light. In this paper, a compact lighting fixture is proposed that consists of a high-power LED, a sequence of lenses, an adjustable mirror and tunable diffuser, to achieve an adaptive lighting functionality. This adaptive luminaire is integrated with an embedded system and camera, to realize autonomous beam adjustment based on computer vision in a museum setting. The embedded system performs semantic segmentation to detect painting masks, and adapts the light beam direction and spot size to the detected painting frame via a feedback loop. The system can be considered as a first demonstration of the integration between state-of-the-art computer vision and adaptive light fixtures for indoor lighting.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.