Abstract

This paper proposes a novel adaptive multi-scale quantum harmonic oscillator algorithm based on evolutionary strategies (AMQHOA-ES) for global numerical optimization. Since the original Multi-scale Quantum Harmonic Oscillator Algorithm (MQHOA) utilizes a fixed contraction factor to narrow the search scale, the searching step decreases too fast at the later stage of the evolution and is more likely to suffer premature convergence and stagnation. To improve the convergence performance, an adaptive attenuation mechanism of scaling is proposed to dynamically adjust the exploration and exploitation properties. Evolutionary strategies such as selection, crossover and DE/rand/1 mutation are implemented in the proposed algorithm to enhance the exploration and exploitation abilities. Experimental results evaluated on several unimodal and multimodal benchmark functions indicate the significant improvement of the proposed algorithm to the original MQHOA. Meanwhile, the experimental results compared with several state-of-the-art optimizers show the superiority or competitiveness of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.