Abstract

Graph convolutional networks (GCNs) have obtained remarkable performance in skeleton-based action recognition. However, previous approaches fail to capture the implicit correlations between joints and handle actions across varying time intervals. To address these problems, we propose an adaptive multi-scale difference graph convolution Network (AMD-GCN), which comprises an adaptive spatial graph convolution module (ASGC) and a multi-scale temporal difference convolution module (MTDC). The first module is capable of acquiring data-dependent and channel-wise graphs that are adaptable to both samples and channels. The second module employs the multi-scale approach to model temporal information across a range of time scales. Additionally, the MTDC incorporates an attention-enhanced module and difference convolution to accentuate significant channels and enhance temporal features, respectively. Finally, we propose a multi-stream framework for integrating diverse skeletal modalities to achieve superior performance. Our AMD-GCN approach was extensively tested and proven to outperform the current state-of-the-art methods on three widely recognized benchmarks: the NTU-RGB+D, NTU-RGB+D 120, and Kinetics Skeleton datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call