Abstract

Achieving sufficient spatial capacity gain by having small cells requires careful treatment of inter-cell interference (ICI) management via BS power coordination coupled with user scheduling inside cells. Optimal algorithms have been known to be hard to implement due to high computation and signaling overheads. We propose joint pattern-based ICI management and user scheduling algorithms that are practically implementable. The basic idea is to decompose the original problem into two sub-problems, where we run ICI management at a slower time scale than user scheduling. We empirically show that even with such a slow tracking of system dynamics at the ICI management part, the decomposed approach achieves high performance increase, compared to a conventional universal reuse scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.