Abstract

A comprehensive understanding of multipaddock, rotational grazing management on rangelands has been slow to develop, and the contribution of adaptive management (Briske et al. 2011) and sufficient scale (Teague and Barnes 2017) have been identified as key omissions. We designed an experiment to compare responses of vegetation and cattle in an adaptively managed, multipaddock, rotational system with that of a season-long, continuous system at scales comparable with those of a working ranch. We hypothesized that 1) year-long rest periods in the adaptively managed, rotational pastures would increase the density and productivity of perennial C3 graminoids compared with continuously grazed pastures and 2) adaptive management, supported with detailed monitoring data, would result in similar cattle performance in the rotational as in the continuously grazed pastures. However, we found little supporting evidence for grazing management effects on C3 graminoid abundance or production under either above-average or below-average precipitation conditions during the 5-yr experiment. Furthermore, adaptive rotational grazing resulted in a 12–16% reduction in total cattle weight gain relative to continuous grazing each year. Our work shows that the implementation of adaptive management by a stakeholder group provided with detailed vegetation and animal monitoring data was unable to fully mitigate the adverse consequences of high stock density on animal weight gain. Under adaptive rotational grazing, C3 perennial grass productivity and stocking rate both increased following above-average precipitation. But when adaptive rotational management was directly compared with continuous grazing with the same increase in stocking rate, continuous grazing achieved similar vegetation outcomes with greater cattle weight gains. We suggest that managers in semiarid rangelands strive to maintain cattle at stock densities low enough to allow for maximal cattle growth rates, while still providing spatiotemporal variability in grazing distribution to enhance rangeland heterogeneity and long-term sustainability of forage production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call