Abstract

We consider the numerical approximation of $\mathbb{P}[G\in \Omega]$, where the $d$-dimensional random variable $G$ cannot be sampled directly, but there is a hierarchy of increasingly accurate approximations $\{G_\ell\}_{\ell\in\mathbb{N}}$ which can be sampled. The cost of standard Monte Carlo estimation scales poorly with accuracy in this setup since it compounds the approximation and sampling cost. A direct application of multilevel Monte Carlo (MLMC) improves this cost scaling slightly, but returns suboptimal computational complexities since estimation of the probability involves a discontinuous functional of $G_\ell$. We propose a general adaptive framework which is able to return the MLMC complexities seen for smooth or Lipschitz functionals of $G_\ell$. Our assumptions and numerical analysis are kept general allowing the methods to be used for a wide class of problems. We present numerical experiments on nested simulation for risk estimation, where $G = \mathbb{E}[X|Y]$ is approximated by an inner Monte Carlo estimate. Further experiments are given for digital option pricing, involving an approximation of a $d$-dimensional SDE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.