Abstract
Multilayer perceptrons (MLPs) with long- and short-term memories (LASTMs) are proposed for adaptive processing. The activation functions of the output neurons of such a network are linear, and thus the weights in the last layer affect the outputs of the network linearly and are called linear weights. These linear weights constitute the short-term memory and other weights the long-term memory. It is proven that virtually any function f(x, theta) with an environmental parameter theta can be approximated to any accuracy by an MLP with LASTMs whose long-term memory is independent of theta. This independency of theta allows the long-term memory to be determined in an a priori training and allows the online adjustment of only the short-term memory for adapting to the environmental parameter theta. The benefits of using an MLP with LASTMs include less online computation, no poor local extrema to fall into, and much more timely and better adaptation. Numerical examples illustrate that these benefits are realized satisfactorily.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.