Abstract

Currently, deep-learning-based image dehazing methods occupy a dominant position in image dehazing applications. Although many complicated dehazing models have achieved competitive dehazing performance, effective methods for extracting useful features are still under-researched. Thus, an adaptive multi-feature attention network (AMFAN) consisting of the point-weighted attention (PWA) mechanism and the multi-layer feature fusion (AMLFF) is presented in this paper. We start by enhancing pixel-level attention for each feature map. Specifically, we design a PWA block, which aggregates global and local information of the feature map. We also employ PWA to make the model adaptively focus on significant channels/regions. Then, we design a feature fusion block (FFB), which can accomplish feature-level fusion by exploiting a PWA block. The FFB and PWA constitute our AMLFF. We design an AMLFF, which can integrate three different levels of feature maps to effectively balance the weights of the inputs to the encoder and decoder. We also utilize the contrastive loss function to train the dehazing network so that the recovered image is far from the negative sample and close to the positive sample. Experimental results on both synthetic and real-world images demonstrate that this dehazing approach surpasses numerous other advanced techniques, both visually and quantitatively, showcasing its superiority in image dehazing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.