Abstract

Multi-task learning has been widely applied to Alzheimer’s Disease (AD) studies due to its capability of simultaneously rating the disease severity (classification) and predicting corresponding clinical scores (regression). In this article, we propose a novel technique of Adaptive Multi-task Dual-Structured Learning, named AMDSL, by mutually exploring the dual manifold structure for the label and regression score of the disease data under joint classification and regression tasks, while learning an adaptive shared similarity measure and corresponding feature mapping among these two tasks. We encode both the reconstructed label representation and regression score adaptive to the ideal similarity measure on disease data to achieve the ideal performance on these two joint tasks. The alternating algorithm is proposed to optimize the above objective. We theoretically prove the convergence of the optimization algorithm. The superiority of AMDSL is experimentally validated under joint classification and regression as per various evaluation metrics against the most authoritative Alzheimer’s disease data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.