Abstract

Multi-feature fusion has achieved gratifying performance in image retrieval. However, some existing fusion mechanisms would unfortunately make the result worse than expected due to the domain and visual diversity of images. As a result, a burning problem for applying feature fusion mechanism is how to figure out and improve the complementarity of multi-level heterogeneous features. To this end, this paper proposes an adaptive multi-feature fusion method via cross-entropy normalization for effective image retrieval. First, various low-level features (e.g., SIFT) and high-level semantic features based on deep learning are extracted. Under each level of feature representation, the initial similarity scores of the query image w.r.t. the target dataset are calculated. Second, we use an independent reference dataset to approximate the tail of the attained initial similarity score ranking curve by cross-entropy normalization. Then the area under the ranking curve is calculated as the indicator of the merit of corresponding feature (i.e., a smaller area indicates a more suitable feature.). Finally, fusion weights of each feature are assigned adaptively by the statistically elaborated areas. Extensive experiments on three public benchmark datasets have demonstrated that the proposed method can achieve superior performance compared with the existing methods, improving the metrics mAP by relatively 1.04% (for Holidays), 1.22% (for Oxf5k) and the N-S by relatively 0.04 (for UKbench), respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.