Abstract

A fully automatic, two-step, T1-weighted brain magnetic resonance imaging (MRI) segmentation method is presented. A preliminary mask of parenchyma is first estimated through adaptive image intensity analysis and mathematical morphological operations. It serves as the initial model and probability reference for a level-set algorithm in the second step, which finalizes the segmentation based on both image intensity and geometric information. The Dice coefficient and Euclidean distance between boundaries of automatic results and the corresponding references are reported for both phantom and clinical MR data. For the 28 patient scans acquired at our institution, the average Dice coefficient was 98.2% and the mean Euclidean surface distance measure was 0.074 mm. The entire segmentation for either a simulated or a clinical image volume finishes within 2 min on a modern PC system. The accuracy and speed of this technique allow us to automatically create patient-specific finite element models within the operating room on a timely basis for application in image-guided updating of preoperative scans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.