Abstract

When a model of an industrial system is developed, it is expected that this model performs consistently when applied to other identically designed systems. However, different operating hours, degradation or maintenance, among other circumstances, cause a change in the dynamics of the system and result in the model not performing as expected. For this reason, it is necessary to build a model that continuously adapts to changes in the dynamics of the system, in order to handle such deviations and thus reduce the estimation error. This paper proposes the development of an adaptive model based on Echo State Networks to estimate the level of a water tank. For this purpose, two identically designed industrial pilot plants are used, taking one of them as a reference for the parameterization, training and validation of the model, and applying the developed model to the other one in order to evaluate the adaptation to changes in the dynamics of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.