Abstract

In this paper, we propose a novel adaptive reducedrank strategy for very large multiuser multi-input multi-output (MIMO) systems. The proposed reduced-rank scheme is based on the concept of joint iterative optimization (JIO) of filters according to the minimization of the bit error rate (BER) cost function. The proposed optimization technique adjusts the weights of a projection matrix and a reduced-rank filter jointly. We develop stochastic gradient (SG) algorithms for their adaptive implementation and introduce a novel automatic rank selection method based on the BER criterion. Simulation results for multiuser MIMO systems show that the proposed adaptive algorithms significantly outperform existing schemes. (5 pages)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.