Abstract

An adaptive minimum action method is proposed for computing the most probable transition paths between stable equilibria in metastable systems that do not necessarily have an underlying energy function, by minimizing the action functional associated with such transition paths. This new algorithm uses the moving mesh strategy to adaptively adjust the grid points over the time interval of transition. Numerical examples are presented to demonstrate the efficiency of the adaptive minimum action method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.