Abstract

Three-dimensional (3-D) reconstruction of a shiny surface is a great challenge for existing structured light techniques because serious measurement errors will occur in image saturation regions in the captured image. To this end, an adaptive microphase measuring profilometry (AMPMP) is proposed. In this method, an optimal frequency selection strategy is introduced to select the frequencies of phase-shifted fringe patterns. The intensity relation between the projected pattern and the captured image is estimated by fitting a nonlinear function after projecting a series of uniform gray-level patterns onto the shiny surface, and the mapping regions of saturated areas in the captured image are computed with the correspondence between the projector image plane and the camera image plane, which is established through MPMP. Based on the estimated intensity relation and the mapping regions, the optimal projection intensities of saturated areas are adaptively adjusted. Then, the adjusted phase-shifted fringe patterns are projected to obtain the absolute phase distribution of the shiny surface. Therefore, accurate 3-D shape reconstruction is realized. The experimental results demonstrated that the proposed AMPMP can well tackle saturated areas of shiny surfaces and has greater performance than other commonly used adaptive fringe projection techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.