Abstract

Spatial scan density (SSD) estimation via mixture models is an important problem in the field of spatial statistical analysis and has wide applications in image analysis. The “borrowed strength” density estimation (BSDE) method via mixture models enables one to estimate the local probability density function in a random field wherein potential similarities between the density functions for the subregions are exploited. This article proposes an efficient methods for SSD estimation by integrating the borrowed strength technique into the alternative EM framework which combines the statistical basis of the BSDE approach with the stability and improved convergence rate of the alternative EM methods. In addition, we propose adaptive SSD estimation methods that extend the aforementioned approach by eliminating the need to find the posterior probability of membership of the component densities afresh in each subregion. Simulation results and an application to the detection and identification of man-made regions of interest in an unmanned aerial vehicle imagery experiment show that the adaptive methods significantly outperform the BSDE method. Other applications include automatic target recognition, mammographic image analysis, and minefield detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.