Abstract

As nanophotonic devices become increasingly complex, computer simulations of such devices are becoming ever more important. Unfortunately, computer simulations of nanophotonic devices are computationally expensive, especially if many simulations are necessary, e.g., when optimizing or inverse designing a device. Here we study adaptive mesh refinement for finite-element method simulations using an a posteriori error estimation method. We demonstrate that the use of adaptive meshing leads to faster convergence with lower memory footprint for complex three-dimensional nanophotonic structures. Nevertheless, one needs to be careful to avoid a mesh propagation effect for adaptive mesh refinement to be a successful strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call