Abstract

An open-source program implementing a block-structured adaptive mesh refinement method was adopted for the fine structure numerical simulation of detonation initiation in supersonic combustible mixtures. Simulations were conducted on a nested parallel computing system. The initiation process was specified as three stages, and their respective flow field characteristics were analyzed. Results indicate that a hot jet under specific conditions can have a similar effect as a pneumatic oblique bevel for inducing periodical shock-induced detonative combustion by a bow shock. The interaction of bow shock–induced combustion with the local detonation wave, produced by the reflection shock on the upper wall, can create a structure with two triple-wave points. The hot jet not only plays a role in the detonation initiation but also acts as a stabilizing control mechanism for detonation propagation. In the simulations in this study, the detonation wave propagates in an overdriven state initially and achieves self-sustaining motion after the shutdown of the hot jet. Subsequently, the final pisiform structure of typical stable Chapman-Jouguet detonation cells is formed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.