Abstract

Continental scale marine ice sheets such as the present day West Antarctic Ice Sheet are strongly affected by highly localized features, presenting a challenge to numerical models. Perhaps the best known phenomenon of this kind is the migration of the grounding line — the division between ice in contact with bedrock and floating ice shelves — which needs to be treated at sub-kilometer resolution. We implement a block-structured finite volume method with adaptive mesh refinement (AMR) for three dimensional ice sheets, which allows us to discretize a narrow region around the grounding line at high resolution and the remainder of the ice sheet at low resolution. We demonstrate AMR simulations that are in agreement with uniform mesh simulations, but are computationally far cheaper, appropriately and efficiently evolving the mesh as the grounding line moves over significant distances. As an example application, we model rapid deglaciation of Pine Island Glacier in West Antarctica caused by melting beneath its ice shelf.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.