Abstract
The rise of the Internet of Things (IoT) and Industry 2.0 has spurred a growing need for extensive data computing, and Spark emerged as a promising Big Data platform, attributed to its distributed in-memory computing capabilities. However, practical heavy workloads often lead to memory bottleneck issues in the Spark platform. This results in resilient distributed datasets (RDD) eviction and, in extreme cases, violent memory contentions, causing a significant degradation in Spark computational efficiency. To tackle this issue, we propose an adaptive memory reservation (AMR) strategy in this article, specifically designed for heavy workloads in the Spark environment. Specifically, we model optimal task parallelism by minimizing the disparity between the number of tasks completed without blocking and the number completed in regular rounds. Optimal memory for task parallelism is determined to establish an efficient execution memory space for computational parallelism. Subsequently, through adaptive execution memory reservation and dynamic adjustments, such as compression or expansion based on task progress, the strategy ensures dynamic task parallelism in the Spark parallel computing process. Considering the cost of RDD cache location and real-time memory space usage, we select suitable storage locations for different RDD types to alleviate execution memory pressure. Finally, we conduct extensive laboratory experiments to validate the effectiveness of AMR. Results indicate that, compared to existing memory management solutions, AMR reduces the execution time by approximately 46.8%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.