Abstract

One of the ultimate goals of artificial intelligence is to achieve the capability of memory evolution and adaptability to changing environments, which is termed adaptive memory. To realize adaptive memory in artificial neuromorphic devices, artificial synapses with multi-sensing capability are required to collect and analyze various sensory cues from the external changing environments. However, due to the lack of platforms for mediating multiple sensory signals, most artificial synapses have been mainly limited to unimodal or bimodal sensory devices. Herein, we present a multi-modal artificial sensory synapse (MASS) based on an organic synapse to realize sensory fusion and adaptive memory. The MASS receives optical, electrical, and pressure information and in turn generates typical synaptic behaviors, mimicking the multi-sensory neurons in the brain. Sophisticated synaptic behaviors, such as Pavlovian dogs, writing/erasing, signal accumulation, and offset, were emulated to demonstrate the joint efforts of bimodal sensory cues. Moreover, associative memory can be formed in the device and be subsequently reshaped by signals from a third perception, mimicking modification of the memory and cognition when encountering a new environment. Our MASS provides a step toward next-generation artificial neural networks with an adaptive memory capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.