Abstract

Support vector machines (SVMs) are one of the most popular and powerful machine learning techniques, but suffer from a significant drawback of the high time and memory complexities of their training. This issue needs to be endured especially in the case of large and noisy datasets. In this paper, we propose a new adaptive memetic algorithm (PCA2MA) for selecting valuable SVM training data from the entire set. It helps improve the classifier score, and speeds up the classification process by decreasing the number of support vectors. In PCA2MA, a population of reduced training sets undergoes the evolution, which is complemented by the refinement procedures. We propose to exploit both a priori information about the training set—extracted using the data geometry analysis—and the knowledge attained dynamically during the PCA2MA execution to enhance the refined sets. Also, we introduce a new adaptation scheme to control the pivotal algorithm parameters on the fly, based on the current search state. Extensive experimental study performed on benchmark, real-world, and artificial datasets clearly confirms the efficacy and convergence capabilities of the proposed approach. We demonstrate that PCA2MA is highly competitive compared with other state-of-the-art techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.