Abstract
Background: Acute kidney injury (AKI) is common in advanced liver cirrhosis, a consequence of reduced kidney perfusion due to splanchnic arterial vasodilation and intrarenal vasoconstriction. It clinically manifests as hepatorenal syndrome type 1, type 2, or as acute tubular necrosis. Beyond hemodynamic factors, an additional mechanism may be hypothesized to explain the renal dysfunction during liver cirrhosis. Recent evidence suggest that such mechanisms may be closely related to obstructive jaundice. Methods: Given the not completely elucidated role of bile acids in kidney tissue damage, this study developed a rat model of AKI with liver cirrhosis induction by carbon tetrachloride (CCl4) inhalation for 12 weeks. Histological analyses of renal and liver biopsies were performed at sacrifice. Organic anion tubular transporter distribution and apoptosis in kidney cells were analyzed by immunohistochemistry. Circulating and urinary markers of inflammation and tubular injury were assayed in 21 treated rats over time (1, 2, 4, 8, and 12 weeks of CCl4 administration) and 5 controls. Results: No renal histopathological alterations were found at sacrifice. Comparing treated rats with controls, organic anion transporters were differentially expressed and localized. High serum bile acid values were detected in cirrhotic animals, while caspase-3 staining was negative in both groups. Increased levels of serum inflammatory and urinary tubular injury biomarkers were observed during cirrhosis progression, with a peak after 4 and 8 weeks of treatment. Conclusions: These findings suggest possible adaptive tubular mechanisms for bile acid transporters in response to cirrhosis-induced AKI.
Highlights
Physiological changes occurring in patients affected by decompensated liver cirrhosis with ascites leads to a markedly increased risk of acute kidney injury (AKI), with prevalence ranging from 14% to 50% [1,2]
The most frequent causes of cirrhosis-induced Acute kidney injury (AKI) include pre-renal injury, acute tubular necrosis (ATN), hepatorenal syndrome (HRS), and post-renal obstruction, the latter representing less than 1% of cases [3]
Several evidence suggest a possible role for bile acids in inducing choleric nephropathy, a comprehensive term referred to renal dysfunction in the course of obstructive jaundice
Summary
Physiological changes occurring in patients affected by decompensated liver cirrhosis with ascites leads to a markedly increased risk of acute kidney injury (AKI), with prevalence ranging from 14% to 50% [1,2]. Acute kidney injury (AKI) is common in advanced liver cirrhosis, a consequence of reduced kidney perfusion due to splanchnic arterial vasodilation and intrarenal vasoconstriction. It clinically manifests as hepatorenal syndrome type 1, type 2, or as acute tubular necrosis. Methods: Given the not completely elucidated role of bile acids in kidney tissue damage, this study developed a rat model of AKI with liver cirrhosis induction by carbon tetrachloride (CCl4) inhalation for 12 weeks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.