Abstract
In the future, artificial learning agents are likely to become increasingly widespread in our society. They will interact with both other learning agents and humans in a variety of complex settings including social dilemmas. We consider the problem of how an external agent can promote cooperation between artificial learners by distributing additional rewards and punishments based on observing the learners’ actions. We propose a rule for automatically learning how to create the right incentives by considering the players’ anticipated parameter updates. Using this learning rule leads to cooperation with high social welfare in matrix games in which the agents would otherwise learn to defect with high probability. We show that the resulting cooperative outcome is stable in certain games even if the planning agent is turned off after a given number of episodes, while other games require ongoing intervention to maintain mutual cooperation. However, even in the latter case, the amount of necessary additional incentives decreases over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.