Abstract

AbstractMaternal effects can give newborns a head start in life by adjusting natal phenotypes to natal environments, yet their strength and adaptiveness are often difficult to investigate in natural populations. Here, we studied anticipatory maternal effects and their adaptiveness in common lizards in a seminatural experimental system. Specifically, we investigated how maternal environments (i.e., vegetation cover) and maternal phenotype (i.e., activity levels and body length) can shape offspring phenotype. We further studied whether such maternal effects influenced offspring survival in natal environments varying with respect to vegetation cover, conspecific density, and, consequently, maternal fitness. More active females from dense vegetation habitats produced bigger offspring than their less active counterparts, the contrary being true for sparse vegetation habitats. Moreover, females from dense vegetation habitats produced more active offspring and more active offspring survived better in dense vegetation habitats, resulting in greater maternal fitness through maternal effects. These results suggest adaptive anticipatory maternal effects, induced by vegetation structure and mediated by activity levels that may shape early-life prospects in natal environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.