Abstract

AbstractThe computational efficiency of FFT‐based computational micromechanics is deeply rooted in the underlying regular, that is, Cartesian, discretization. The bottleneck for most industrial applications is evaluating the typically rather expensive constitutive law on the regular grid. In the work at hand, we exploit coarsening strategies to evaluate the material law with the intention of speeding up the overall computation time while retaining the level of achieved accuracy. Inspired by wavelet‐compression techniques, we form aggregates of voxels where the local strain tensors are close, and compute the stresses on these coarsened elements. If done naively, such a strategy will lead to intrinsic instabilities whose origin is apparent from a mathematical perspective. As a remedy, we introduce a stabilization technique which is inspired by hourglass control well‐known for underintegrated finite elements. We introduce octree as well as sandwich coarsening, discuss the handling of internal variables, report on the efficient implementation of the concepts and demonstrate the effectiveness of the developed technology on simple as well as industrial examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.