Abstract

The Expeditionary Fighting Vehicle (EFV) is an amphibious vehicle designed to operate through harsh conditions and at much higher speeds than its predecessors. These unique capabilities and broadly varying operational conditions lead to a complex design and human factors scenario for the forward seating positions that cannot be solved using conventional passive seat suspension systems. Injurious shock loads transmitted to the occupants when traversing over water in high sea states and/or at high speeds, as well as harmful shock and vibration transmitted to the occupants when the vehicle is travelling over land, pose a threat to occupant health and significantly limit mission duration. In this study, a semi-active magnetorheological (MR) seat suspension is developed which adapts to broadly varying operational conditions, as well as occupant weight, to provide optimal protection of EFV occupants. It is shown that this MR seat suspension system will reduce the shock and vibration transmitted to the occupant by up to 33% and 65%, respectively, as compared to the existing passive suspension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call