Abstract

This paper describes a machine learning algorithm for analyzing the multispectral images of natural scenes. A mathematical training algorithm has been developed to guide the operation of a statistical pattern recognition technique for detecting and extracting the image clusters in a multidimensional feature space. For this purpose, the peak modality of 1-D image histograms is selected as the mathematical training criterion. The algorithm is applied to the clusters of the color images of natural scenes in 3-D feature space. During the training process, image clusters are detected in some well-defined decision elements using constant lightness and chromaticity loci of the uniform color space. This gives non-parametric estimates of the clusters' distributions without imposing any constraints in their forms. The linear discriminant method is then used to project simultaneously the detected clusters onto a line for region isolation. This permits utilization of all the spectral properties for object recognition and inherently recognizes their respective cross correlation.© (1992) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.