Abstract

A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions.

Highlights

  • Numerous species have been proposed to display power-law distributed movement patterns when foraging [1,2,3,4,5]

  • A common interpretation of power-law distributed movements is that they represent the outcome of Levy walks or Levy flights [2,5,6]

  • Because the underlying movement distributions do not change in response to resource encounters, Levy processes imply that organisms do not use information about recent resource encounters to localize search in space

Read more

Summary

Introduction

Numerous species have been proposed to display power-law distributed movement patterns when foraging [1,2,3,4,5]. We can consider these two synonymous, as we do here (and use the term Levy flights). Both refer to scale-free random walks in which run duration or movement lengths are independently drawn from a probability distribution with a heavy power-law tail. Though the power-law distribution of movement lengths for many organisms has come into question [7], the processes which create animal paths are potentially still Levy processes. Because the underlying movement distributions do not change in response to resource encounters, Levy processes imply that organisms do not use information about recent resource encounters to localize search in space

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call