Abstract

Peer-to-peer (P2P) streaming is emerging as a viable communications paradigm. Recent research has focused on building efficient and optimal overlay multicast trees at the application level. A few commercial products are being implemented to provide voice services through P2P streaming platforms. However, even though many P2P protocols from the research community claim to be able to support large scale low-latency streaming, none of them have been adopted by a commercial voice system so far. This gap between advanced research prototypes and commercial implementations shows that there is a lack of a practical and scalable P2P system design that can provide low-latency service in a real implementation. After analyzing existing P2P system designs, we found two important issues that could lead to improvements. First, many existing designs that aim to build a low-latency streaming platform often make the unreasonable assumption that the processing time involved at each node is zero. However in a real implementation, these delays can add up to a significant amount of time after just a few overlay hops and make interactive applications difficult. Second, scant attention has been paid to the fact that even in a conversation involving a large number of users, only a few of the users are actually actively speaking at a given time. We term these users, who have more critical demands for low-latency, active users. In this paper, we detail the design of a novel peer-to-peer streaming architecture called ACTIVE. We then present a complete commercial scale voice chat system called AudioPeer that is powered by the ACTIVE protocol. The ACTIVE system significantly reduces the end-to-end delay experienced among active users while at the same time being capable of providing streaming services to very large multicast groups. ACTIVE uses realistic processing assumptions at each node and dynamically optimizes the streaming structure while the group of active users changes over time. Consequently, it provides virtually all users with the low-latency service that before was only possible with a centralized approach. We present results from both simulations and our real implementation, which clearly show that our ACTIVE system is a feasible approach to scalable, low-latency P2P streaming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.