Abstract

A key part of implementing high-level languages is providing built- in and default data structures. Yet selecting good defaults is hard. A mutable data structure’s workload is not known in advance, and it may shift over its lifetime—e.g., between read-heavy and write- heavy, or from heavy contention by multiple threads to single- threaded or low-frequency use. One idea is to switch implementa- tions adaptively, but it is nontrivial to switch the implementation of a concurrent data structure at runtime. Performing the transition requires a concurrent snapshot of data structure contents, which normally demands special engineering in the data structure’s de- sign. However, in this paper we identify and formalize an relevant property of lock-free algorithms. Namely, lock-freedom is su cient to guarantee that freezing memory locations in an arbitrary order will result in a valid snapshot. Several functional languages have data structures that freeze and thaw, transitioning between mutable and immutable, such as Haskell vectors and Clojure transients, but these enable only single-threaded writers. We generalize this approach to augment an arbitrary lock-free data structure with the ability to gradually freeze and optionally transition to a new representation. This aug- mentation doesn’t require changing the algorithm or code for the data structure, only replacing its datatype for mutable references with a freezable variant. In this paper, we present an algorithm for lifting plain to adaptive data and prove that the resulting hy- brid data structure is itself lock-free, linearizable, and simulates the original. We also perform an empirical case study in the context of heating up and cooling down concurrent maps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call