Abstract

One of the fundamental problems in theoretical electrocardiography can be characterized by an inverse problem. We present new methods for achieving better estimates of heart surface potential distributions in terms of torso potentials through an inverse procedure. First, we outline an automatic adaptive refinement algorithm that minimizes the spatial discretization error in the transfer matrix, increasing the accuracy of the inverse solution. Second, we introduce a new local regularization procedure, which works by partitioning the global transfer matrix into sub-matrices, allowing for varying amounts of smoothing. Each submatrix represents a region within the underlying geometric model in which regularization can be specifically 'tuned' using an a priori scheme based on the L-curve method. This local regularization method can provide a substantial increase in accuracy compared to global regularization schemes. Within this context of local regularization, we show that a generalized version of the singular value decomposition (GSVD) can further improve the accuracy of ECG inverse solutions compared to standard SVD and Tikhonov approaches. We conclude with specific examples of these techniques using geometric models of the human thorax derived from MRI data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.