Abstract

This paper presents several adaptive linear predictive coding techniques based upon extension of recursive ladder filters to two and three dimensions (2-D/3-D). A 2-D quarter-plane autoregressive ladder filter is developed using a least square criterion in an exact recursive fashion. The 2-D recursive ladder filter is extended to a 3-D case which can adaptively track the variation of both spatial and temporal changes of moving images. Using the 2-D/3-D ladder filters and a previous frame predictor, two types of adaptive predictor-control schemes are proposed in which the prediction error at each pel can be obtained at or close to a minimum level. We also investigate several modifications of the basic encoding methods. Performance of the 2D/3-D ladder filters, their adaptive control schemes, and variations in coding methods are evaluated by computer simulations on two real sequences and compared to the results of motion compensation and frame differential coders. As a validity test of the ladder filters developed, the error signals for the different predictors are compared and the visual quality of output images is verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.