Abstract
With an ever-increasing number of connected devices on roads, it becomes unsustainable to provide nearby specialized execution resources (compute and storage) for servicing innovative applications. Moreover, the vehicular environment being inherently ad hoc and opportunistic, not to mention highly mobile, makes it unsuitable to use traditional cloud computing due to delayed and interrupted services. Thus, there is a possibility to introduce potential collaboration among nearby connected vehicles. However, the underlying decision model for the selection of the most suitable vehicle for task offloading is challenging in such a dynamic environment. In this study, we propose a collaborative vehicular computing framework that adopts online learning for efficient task assignment between local and neighboring computing resources. The underlying workload adaptive task offloading intends to balance out the workload across neighboring vehicles. The framework is compared against three techniques including two adaptive learning techniques in terms of service delay, efficiency, task delivery rate, task failures, and learning regret. The results demonstrate the effectiveness of the proposed resource-sharing network, improving service quality and throughput for servicing innovative intelligent transportation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.