Abstract

Distributed Denial of Service (DDoS) attacks has become the most powerful cyber weapon to target the businesses that operate on the cloud computing environment. The sophisticated DDoS attack affects the functionalities of the cloud services and affects its core capabilities of cloud such as availability and reliability. The current intrusion detection system (IDS) must cope with the dynamicity and intensity of immense traffic at the cloud hosted applications and the security attack must be inspected based on the attack flow characteristics. Hence, the proposed Adaptive Learning and Automatic Filtering of Distributed Denial of Service (DDoS) Attacks in Cloud Computing Environment is designed to adapt with varying kind of protocol attacks using misuse detection. The system is equipped with custom and threshold techniques that satisfies security requirements and can identify the different DDoS security attacks. The proposed system provides promising results in detecting the DDoS attacks in cloud environment with high detection accuracy and good alert reduction. Threshold method provides 98% detection accuracy with 99.91%, 99.92% and 99.94% alert reduction for ICMP, UDP and TCP SYN flood attack. The defense system filters the attack sources at the target virtual instance and protects the cloud applications from DDoS attacks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.