Abstract

This paper investigates an adaptive leader-follower formation control problem of multiple mobile robots in the presence of unknown skidding and slipping. First, we employ the concept of virtual robots to achieve the desired formation and derive the kinematics of the virtual leader and follower robots considering skidding and slipping effects. Then, we design an adaptive formation controller based on a two-dimensional error surface where the adaptive technique is used for compensating the unknown skidding and slipping effects that influence the follower robots. From Lyapunov stability theorem, we show that all errors of the closed-loop system are uniformly ultimately bounded, and thus the desired formation is successfully achieved regardless of the presence of unknown skidding and slipping effects. Simulation results are provided to demonstrate the effectiveness of the proposed formation control scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call