Abstract
In this paper, we consider variable selection for general transformation models with right censored data and propose a unified procedure for both variable selection and estimation. We conduct the proposed procedure by maximizing penalized log-marginal likelihood function with Adaptive LASSO penalty (ALASSO) on regression coefficients. Two main advantages of this procedure are as follows: (i) the penalties can be assigned to regression coefficients adaptively by data according to the importance of corresponding covariates; (ii) it is free of baseline survival function and censoring distribution. Under some regular conditions, we show that the penalized estimates with ALASSO are n-consistent and enjoy oracle properties. Some simulation examples and Primary Biliary Cirrhosis Data application illustrate that our proposed procedure works very well for moderate sample size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Computational Statistics and Data Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.